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Abstract Earth orbiting satellites, such as Sentinel 1A‐B, build up an ever‐growing set of synthetic
aperture radar images of the ground. This conceptually allows for real‐time monitoring of ground
displacements using Interferometric Synthetic Aperture Radar (InSAR), notably in tectonically active
regions such as fault zones or over volcanoes. We propose a Kalman filter for InSAR time series analysis
(KFTS), an efficient method to rapidly update preexisting time series of displacement with data as they are
made available, with limited computational cost. KFTS solves together for the evolution of phase change
with time and for a parametrized model of ground deformation. Synthetic tests of the KFTS reveal exact
agreement with the equivalent weighted least squares solution and a convergence of descriptive model
parameter after the assimilation of about 1 year of data. We include the impact of sudden deformation events
such as earthquakes or slow slip events on the time series of displacement. First tests of the KFTS on
ENVISAT data over Mt. Etna (Sicily) and Sentinel 1 data around the Chaman fault (Afghanistan, Pakistan)
show precise (±0.05 mm) retrieval of phase change when data are sufficient. Otherwise, the optimized
parametrized model is used to forecast phase change. Good agreement is found with classic time series
analysis solution and GPS‐derived time series. Accurate estimates are conditioned to the proper
parametrization of errors so that models and observations can be combined with their respective
uncertainties. This new tool is freely available to process ongoing InSAR time series.

1. Introduction

Since the 1990s, Interferometric Synthetic Aperture Radar (InSAR) has been used and optimized to measure
ground deformation from satellite (e.g., Burgmann et al., 2000; Griffiths, 1995; Simons & Rosen, 2015). While
first studies focused on temporally discrete, large‐amplitude events, such as earthquakes (e.g., Massonnet
et al., 1993), recent geophysical applications rely on deriving the temporal evolution of deformation to cap-
ture the full spectrum of temporal behaviors, from short episodic deformation events (e.g., Lindsey et al.,
2015; Rousset et al., 2016) to long‐term, decadal trends (e.g., Chaussard, Bürgmann, et al., 2014; Grandin
et al., 2012; Jolivet et al., 2015). Examples include continuous monitoring of aquifers (e.g., Chaussard,
Wdowinski, et al., 2014; López‐Quiroz et al., 2009; Schmidt & Bürgmann, 2003), volcanoes (e.g., Biggs et al.,
2014; Pritchard & Simons, 2004), slow‐moving landslides (e.g., Hilley et al., 2004; Scheingross et al., 2013;
Tong & Schmidt, 2016), or aseismic slip along active faults (e.g., Jolivet et al., 2013; Khoshmanesh &
Shirzaei, 2018).

Capturing the time evolution of ground displacement using InSAR is not direct and requires adequate pro-
cessing of sets of interferograms (e.g., Simons & Rosen, 2015). An interferogram is the conjugate product of
two Synthetic Aperture Radar (SAR) images. The corresponding interferometric phase directly records
ground deformation between two passes of the satellite. Reconstructing the temporal evolution of the phase,
hence ground deformation, through time should be straightforward. However, this procedure, called time
series analysis, remains a challenge as interferograms are often affected by spatial and temporal decorrela-
tion (e.g., Berardino et al., 2002; Simons & Rosen, 2015; Zebker & Villasenor, 1992). Furthermore, the recon-
structed phase is the combination of various sources of noise such as atmospheric and ionospheric delays as
well as ground displacement. Part of the time series analysis procedure intends to separate these different
contributions (e.g., Agram & Simons, 2015; Burgmann et al., 2000; Emardson et al., 2003).

Two main approaches have been developed to perform time series analysis. First, Permanent or Persistent
Scatterers techniques focus on a subset of reliable pixels with stable backscattering properties over time to
perform spatial and temporal unwrapping (e.g., Ferretti et al., 2000; Hooper et al., 2007). Second, Small
Baseline Subset (SBAS) techniques rely on the redundancy of the network of interferograms to enhance
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spatial coverage and resolution (e.g., Berardino et al., 2002; Hetland et al., 2012). In this paper, we focus on
SBAS techniques.

Temporal increments of phase change are linked to interferograms by a set of linear equations. As we aim to
reconstruct the evolution of phase with time from interferograms, we need to solve an inverse problem,
which is usually done using classic least squares (Agram et al., 2013; Schmidt & Bürgmann, 2003; Usai,
2003) or singular value decomposition (Berardino et al., 2002; Jolivet et al., 2012; López‐Quiroz et al.,
2009). Nowadays, the resolution, frequency, and availability of SAR images grow dramatically thanks to
recent launches of numerous SAR missions including the Sentinel 1A‐1B (European Space Agency) or the
ALOS 2 (Japan Aerospace Exploration Agency) missions (Elliott et al., 2016). Future missions, such as
Sentinel 1C‐1D and NISAR (NASA, ISRO), will also lead to a growth in the amount of available data, ensur-
ing long temporal coverage of deformation. Existing SBAS techniques will inevitably become overwhelmed
by the rapid accumulation of images. These methods require increasing computing power and memory, as
the size of the inverse problem to solve grows with the quantity of observations. More importantly, acquisi-
tions at a given time do not inform on the state of deformation at another given time if these epochs are not
connected by interferograms. Processing the entire set of interferograms, each time a new acquisition is per-
formed is not only computationally expensive, but also not useful.

We propose a method to sequentially update preexisting multiannual time series of InSAR data considering
only the latest observations. We describe how to use data assimilation for the reconstruction of ground dis-
placements using InSAR, including minimal computing time and little data storage. We derive the formula-
tion of a Kalman filter for time series analysis (KFTS), an approach analogous to least squares in its
assumptions and final solution (Cohn, 1997; Kalman, 1960). As data assimilation methods require accurate
estimation of errors at all steps, our method allows to investigate various sources of errors.

Kalman filtering is already widely used to build Global Navigation Satellite System (GNSS) time series
(e.g., Hofmann‐Wellenhof et al., 2012), as very frequent acquisition of small amount of data makes such
filtering very relevant. Other application in geodesy includes modeling of volcanic reservoir properties
(e.g., Bato et al., 2018; Shirzaei & Walter, 2010) or of fault slip at depth (e.g., Bekaert et al., 2016; Segall &
Matthews, 1997). Most of these techniques are driven by time series of deformation in order to reconstruct
the temporal evolution of a model describing the source of surface deformation. The aforementioned meth-
ods require the use of a time series analysismethod in order to reconstruct surface displacements beforehand.
Furthermore, although uncertainties are fundamental in any assimilation scheme, uncertainties are unfortu-
nately not always correctly estimated (Agram & Simons, 2015; Bekaert et al., 2016). Here we provide a
method to continuously and efficiently build InSAR time series from a stack of SAR interferograms and pro-
pagate associated uncertainties.

In the following, we detail time series analysis for InSAR and formulate explicitly the corresponding Kalman
filter approach. We highlight the efficiency of our approach on two different regions subjected to volcanic
and tectonic deformation. We first test our method on a time series of SAR acquisitions by the Envisat satel-
lite between 2003 and 2010 over the Etna volcano, in Sicily, around which several GPS stations enable us to
derive local time series of ground deformation. We validate our approach against this independent set of
data. We also use GPS data to assess the robustness of the uncertainties derived by our KFTS implementa-
tion. We then derive a time series of ground deformation using Sentinel 1 data between 2014 and 2018 over
western Pakistan and southern Afghanistan. This region is poorly instrumented, and no deformation time
series are available for comparison with our approach. However, vegetation cover is scarce; hence, interfero-
metric coherence is good, and the Sentinel constellation has acquired a large amount of SAR images, allow-
ing us to highlight the efficiency of our time series analysis method.

2. A Kalman Filter Approach for Times Series Analysis
2.1. Data Description and Formulation of the Problem

The phase of an interferogram is a differential measurement of the spatial and temporal change in the
two‐way travel time of the radar wave between the satellite and the ground. It is a direct measurement of
the change in the apparent distance between the satellite and the ground, hence a function of ground
deformation between two dates. Our goal is to reconstruct the evolution of the interferometric phase over
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time with respect to the first acquisition and to extract ground deformation from this time series. Wework on
each pixel independently from its neighbors (e.g., Berardino et al., 2002; Cavalié et al., 2007). For a given
pixel, the unwrapped phase of the interferogram between two dates at times ti and tj is

Φij ¼ ϕj − ϕi þ ϵij; (1)

where ϕj is the unwrapped phase at a time tj relative to the phase ϕ0 at time t0 and ϵij is the error asso-
ciated with the potentially inaccurate unwrapping of the interferometric phase, with spatial filtering
and with multilooking (i.e., noncoherent phase averaging often used to enhance coherence) (Agram &
Simons, 2015; De Zan et al., 2015; Goldstein et al., 1988). As interferograms connect multiple SAR acquisi-
tions in time, we call a set of interferograms a network and ϵij is often referred to as network misclosure
(Doin et al., 2011). Herein, the standard deviation of ϵij will be noted σϵ, assuming this standard deviation
is common to all interferograms for simplicity.

Moreover, for a single pixel, the network of interferograms is often incomplete, as unwrapping of the
phase is not always possible due to spatial and temporal variations of phase coherence. If the fringe rate
is too high between neighboring pixels, it is not possible to derive the relative motion of these pixels from
one to another; hence, phase cannot be unwrapped (Goldstein et al., 1988). Without connectivity, it is
impossible to reconstruct a common phase history between temporally disconnected sets of interfero-
grams. Various methods propose to derive a temporally parametrized model of the phase evolution, either
assuming constant velocities between subnetworks (Berardino et al., 2002) or more complex ad hoc mod-
els (e.g., Hetland et al., 2012; Jolivet & Simons, 2018; Jolivet et al., 2012; López‐Quiroz et al., 2009).

Following the approach of López‐Quiroz et al. (2009), we consider a parametrized function of time to
describe the evolution of the interferometric phase. This function is the linear combination of a set of
user‐defined functions fn of time modulated by coefficients an, such as the interferometric phase ϕi at a time
ti writes

ϕi ¼ ∑
N

n¼1
an f nðtiÞþγi; (2)

where γi is the error corresponding to mismodeling of the interferometric phase at time ti, due to limita-
tions of the functional model and decorrelation noise (Agram & Simons, 2015). Uncorrected atmospheric
effects, such as turbulent and ionospheric delays, are the main contributions to γi (e.g., Doin et al., 2011;
Jolivet et al., 2014). In the following, we assume that γi is normally distributed with a zero mean and a
standard deviation σγ, assumed constant with time for simplicity. Functions fn can be taken for instance
as polynomial terms, Heaviside functions, or periodic functions describing the time history of the inter-
ferometric phase.

Our goal is to solve both Equations 1 and 2 sequentially, whenever a new acquisition allows to compute new
interferograms. We formulate an assimilation framework solving for the interferometric phase ϕi at each
acquisition time ti and for the terms of the parametrized function ak and for the corresponding variances
and covariances.

2.2. Setup of the KFTS

A Kalman filter is an iterative procedure that allows to recover the least squares solution of an inverse pro-
blem by successively adding data. For a recent and detailed introduction to Kalman filtering, readers can
refer to Evensen (2009) or Carrassi et al. (2018). Data assimilation procedures propagate and update with
newly acquired data the probability density function (PDF) of a given model. In a Kalman filter, the PDF
of the model is a Gaussian distribution described by a state vector, m, containing mean values for model
parameters and the associated covariance matrix P. Each time new data are acquired, a Kalman filter pro-
ceeds in two successive steps.

First, at a given time tk, we forecast the state vector mk and its covariance matrix Pk using the state
vector, mk−1, at step k−1. Second, we update this forecast with the information from data acquired at
time tk in a step called analysis.

10.1029/2019JB019150Journal of Geophysical Research: Solid Earth

DALAISON AND JOLIVET 3 of 21



In practice, at a time tk, the state vector mk includes the reconstructed phase values and the coefficients of
the parametrized function of time, an (Figure 1). We initialize the framework with an a priori state vector,
m0, and associated covariances, P0. This a priori reflects our state of knowledge on the different parameters
before we input any data. Each time a new SAR image is acquired, we compute the interferograms connect-
ing this last acquisition with previous ones, typically the four previous ones. Then, we use the functional
form governed by the terms an in the current state vector to forecast the phase at the time of the new acquisi-
tion. Afterward, we analyze the forecast with the information of the incoming data to obtain the updated
state vector.

Following the marginalization rule, the forecast state vector mf
k and its covariance Pf

k are given by

mf
k ¼ Akmk−1 and Pf

k ¼ AkPk−1AT
k þ Qk ∀k ∈ ½1; M�; (3)

where Ak is the state‐transition matrix and Qk the process noise covariance (see Table 1 for variable
description). As illustrated in Figure 1, Ak applied to mk−1 computes the forecast for mk based on the lat-
est parametric description of the time series given by an at time tk−1 (Equation 2). Ak is a matrix represen-
tation of the forecast equations. In practice, phase terms of previous acquisitions and functional

parameters are kept constant while ϕf
k is computed using Equation 2. Because Ak is of rectangular shape,

mf
k is simply mk−1 augmented with the forecast phase value of the most recent acquisition. The corre-

sponding covariance, Pf
k , depends on parameter uncertainties and systematic noise included in Qk.

Systematic noise in Qk represents our level of confidence in an imperfect forecast.

We then update the state and its covariance using the available data dk at time tk applying Bayes' rule, so that

mk ¼ mf
k þ Pf

kH
T
k RkþHkP

f
kH

T
k

� �−1
dk −Hkm

f
k

� �
; (4)

where Rk is the observation noise covariance and Hk the observation model. Hk is effectively the operator
predicting interferograms from the state vector mk. Rk describes our confidence in the observation model,
Hk, for the data dk (hence, Rk describes the statistics of phase misclosure, here assumed normally distrib-
uted). The analyzed variance‐covariance matrix, Pk, is

Pk ¼ Pf
k − Pf

kH
T
k RkþHkP

f
kH

T
k

� �−1
HkP

f
k: (5)

The term Pf
kH

T
k RkþHkP

f
kH

T
k

� �−1
is often referred to as the Kalman gain, as it quantifies how much the

predicted state “has to gain” from the difference between observed and predicted data, dk −Hkm
f
k , called

Figure 1. Scheme of the temporal evolution of the state vector as a function of assimilation time and available data.
Markers highlight elements that are added or modified at a specific time step. Additional values may be kept and
stored for later reanalysis. The last step corresponds to the case when data are not available: The previous state vector is
copied, and the last phase is forecast using the functional description described by the parameters an previously
estimated.
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residual or innovation. It also modulates the information transitioning from the covariance in the model

space HkP
f
k to the covariance of the analysis. For a practical example of our KFTS, see the explicit

formulation in Appendix A1. Note that Equation 4 is the generalized least squares solution of a linear
inverse problem (e.g., Tarantola, 2005).

Because of observations equations, there is a need to keep previous estimates of phases inmk, whenever they
are connected by interferograms used in the analysis step, in order to update phases ϕi (i<k) for all ϕik in dk
(Equation 1 and Figure 1). For instance, if the data contain interferogramsΦak,Φbk, andΦck, we will forecast
and analyze ϕk and reanalyze ϕa, ϕb, and ϕc using past and current observations (Figure 1). This is essential
to keep improving phase estimates taking advantage of the redundancy of information from all interfero-
grams and, thus, limit the propagation of errors over time. Formally, the reanalysis of past estimates with
future data implies that the KFTS formulated above is effectively a Kalman smoother (Cohn et al., 1994;
Cosme et al., 2012).

2.3. Configuring Parameters

The algorithm requires user‐based choices for the parametrization of the functional form and for the various
covariances on a case‐by‐case basis. First, we have to chose a parametrization for the functional form used to
derive the forecast. This choice is based on our knowledge of deformation and simplicity of the model should
be favored over precision to prevent overfitting.

Second, we need to estimate the typical standard deviation of mismodeling σγ for all time steps and of inter-
ferometric network misclosure σϵ for all interferograms. σϵ comes in the construction of R because it quan-
tifies the error between our data (interferograms) and what we are looking for (the relative phase values). It
effectively acts as a regularization term when computing the Kalman gain (Table 1 and Equations 4 and 5).
As underlined by Doin et al. (2011), covariance terms in R are null because ϵij is specific to each interfero-
gram Φij, independently of the common acquisitions ϕi,j. Regarding σγ, it depends on both the simplicity
of the chosen functional form and on the amplitude of unexpected atmospheric perturbations of the inter-
ferometric delay. It is directly fed into the process noise variance‐covariance matrix, Q, since it controls
the flexibility given to the process for phase values to be different from those predicted by the chosen func-
tional form. Typically, σϵ should be small with respect to σγ because we have greater trust in the interfero-
gram construction (Equation 1) than in the functional description of the deformation (Equation 2).

Third, we must quantify the a priori mean and standard deviation of functional model coefficients anwithin
the initial state vector m0 and covariance P0. These values directly control the amplitude of the possible
values for model coefficients in the analyzed state vector and, thus, directly affect the quality of the filter's
forecast. One needs to chose large enough variances with a realistic a priori state vector, so that the natural
spread of the variable is within one standard deviation of its mean.

Fourth, we can optionally add some systematic error to the parameters of the functional representation, an
in the L first elements of the diagonal of Q in order to slow down their convergence with assimilation steps.
Such noise addition introduces some plasticity in the description of deformation (see Appendix A1).

Table 1
Vectors and Matrices Used in the kth KFTS Iteration Assimilating N Interferograms (Φik) Constructed With the Acquisition at Time tk

Symbol Meaning Structure Shape

mk state vector [a0,a1…,aL−1,ϕ0,…,ϕk] (L+k+1)
dk measurement vector [Φfk,Φgk,…,Φhk] N
Pk state covariance — (L+k+1)×(L+k+1)
Qk process noise covariance diagonal matrixa with last element equal to (σγ)

2 (L+k+1)×(L+k+1)
Rk observation noise covariance diagonal matrix with (σϵ)

2 on the diagonal N×N
Ak state‐transition matrix identity matrix with additional row using an to forecast ϕk (L+k+1)×(L+k)
Hk observation model pairs up the phases to build the Φik. Contains 0, 1, and −1 N×(L+k+1)

Note. At this given step, the filter (re)estimates the N+1 phases φi,k and the L parameters an of the linear descriptive model.
aIn our applications, diagonal elements of Qk are zero except the last one; however, it may be useful to add nonzero systematic error in the first L elements cor-
responding to an. See Appendix A1 for a detailed example of our KFTS matrices.
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We discuss real case examples below to illustrate the influence of the different parameters and define a quan-
titative guideline for parametrization in section 4.1.

3. Applications of the KFTS
3.1. Synthetic Tests
3.1.1. Reference Case Setup
In order to asses how well the KFTS retrieves known parameters, we generate a synthetic set of InSAR data
combining synthetic signals of tectonic deformation and atmospheric noise. We assess the influence of the
choice of parameters and of the design of covariance matrices to validate the approach.

We build a two‐dimensional, time‐varying field of phase change typical of what is expected in a region
crossed by a major tectonic fault. We design a synthetic acquisition planning considering a 3 year observa-
tion period with acquisitions every 12 days, similarly to what is expected for recent satellite constellations
such as Sentinel 1. For each of these synthetic acquisitions, we compute synthetic unwrapped interferograms
with the three preceding acquisitions using Equation 1.

We simulate the contributions of tectonic plate motion and shear due to interseismic loading along a fault
(i.e., slow, persistent deformation of a few cm/year), between blocks moving at 4 cm/year with respect to
each other. We add to the time series the surface displacement due to a typical earthquake (i.e., a discrete,
large‐amplitude deformation event of several cm). The modeled earthquake occurs on day 500 of the time
series and induces amaximum of 15 cm of displacement. In addition, we consider the case of a slow transient
slip event occurring on the same fault (i.e., episodic, medium‐amplitude deformation spanning multiple
acquisitions in time). This slow transient slip event has a temporal footprint based on an integrated spline
function of 100 day width centered on Day 210 of the time series, with a maximum cumulative displacement
of 10 cm. Epicenters of both events are shown on Figure 2. All synthetic displacements are generated, con-
sidering dislocations embedded in an elastic homogeneous semi‐infinite halfspace (Okada, 1992).
Furthermore, we include a constant deformation rate related with interseismic loading on the main fault
and seasonal oscillations (i.e., yearly sinusoidal deformation with a phase shift) of the ground everywhere.
In the following tests, we aim to recover all terms of deformation described above as well as the resulting
phase evolution with our KF.

Consequently, the chosen parametrized model of the phase, ϕk, at a time tk, is

ϕk ¼ a0 þ a1tk þ a2sin tk
2π
Tyear

� �
þ a3cos tk

2π
Tyear

� �
þ a4SsseðtkÞþa5HeqðtkÞþγk; (6)

where an and ∀n∈[1,5] are the parameters to be solved for, Tyear is a 1 year period, Ssse is an integrated
spline function centered on Day 210 with a width of 100, Heq is a Heaviside function on Day 500, and
γk is the mismodeling term at time tk with standard deviation σγ.

We first test the performance of the filter on synthetic data without any noise (implying γk = 0,∀k ) and then
on data including noise. To do so, we design a composite noise model to mimic real observations. This
implies that we have, first, a spatially correlated noise reflecting atmospheric effects on each phase “acquisi-
tion” and, second, a misclosure error lower by at least an order of magnitude, assuming that we have no con-
tribution from unwrapping errors (Agram & Simons, 2015; Cavalié et al., 2007; Lohman & Simons, 2005;
López‐Quiroz et al., 2009; Schmidt & Bürgmann, 2003). We add spatial and temporal deviations to all para-
meters an following a random distribution with a standard deviation equal to 10% of their values, and
random noise on interferogram construction equivalent to σϵ = 0.1 mm. Moreover, the atmospheric contri-
bution to phase decorrelation is constructed through the convolution of a white noise, with standard devia-
tion of 10 mm, and a decreasing exponential function of interpixel distances (Jolivet & Simons, 2018). The
specified values reflect errors observed in processed Sentinel 1 data (see section 3.3). The resulting cumula-
tive phase change after 3 years is shown in Figure 2. The temporal evolution of phase change for one pixel is
visible in Figure 3.
3.1.2. Performance of the KFTS With Optimal Configuration
We apply our KFTS with the assumption that the functional form given in Equation 6 is known. Results for
simpler functional forms applied to the same synthetic data are in Figures S2 and S3. A priori model
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Figure 2. Performance of the Kalman filter time series analyis (KFTS) for a two‐dimensional synthetic deformation field. The phase evolution with its noise
content is retrieved from noisy interferograms (i.e., nonzero network misclosure). (a) True cumulative phase at the last time step of the time series including
deformation and correlated and uncorrelated noise. (b) Reconstructed cumulative phase from the KFTS. (c) Root mean square (RMS) error of the the retrieved
phase (B) with respect to the true phase value (A). (d) RMS of the phase retrieved with the KFTS (B) with respect to the least squares solution. All scales are in
centimeters to ensure the example represents a realistic case study. The location of the pixel of interest for Figure 3 is marked by a red square.

Figure 3. Time series with temporal evolution of the model on a synthetic set of InSAR data for one pixel. (a) Case
without noise in the synthetic data. (b) Same synthetic deformation but with a realistic noise model on top. Pink
markers represent reconstituted phases from the Kalman filter, while black crosses are “true” phases. When the
phase is well retrieved, markers overlay each other, and errorbars are too small to appear. Colored lines are
models derived at each assimilation of a new acquisition, which date is indicated by the colorbar. Dashed
black line is the true deformation. In (a), true and reconstituted phases lie on each other and mask the underlying
curves, which include the true model and computed models after day 500 (time of the modeled earthquake).
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parameters in the initial state vector,m0, are set to zero with standard deviations comparable to the expected
spread of parameters: 10 mm for a0, 0.05 mm/day for a1, and 5 mm for the sine and cosine amplitudes and
70 mm for the displacement of slip events. The first phase value for all pixels is set to zero with zero uncer-
tainty. This means that m0 is a null vector, and P0 is a diagonal matrix containing the squared standard
deviations listed above. When realistic noise is considered, we chose optimal parameters corresponding to
the noise implemented in the synthetic data, that is, σγ=10 mm and σϵ=0.1 mm. For comparison, we solve
the full problem for all acquisitions using an equivalent least squares inversion with identical model and
data covariances (Tarantola, 2005).

For a model without any noise (except σϵ=10−5 mm to avoid singularity of the gain), phase values are
retrieved within σϵ, and model parameters converge after the assimilation of ∼6 months of data
(Figure 3a). The time required for convergence of the model parameters is justified by the fact that there
is an ambiguity between the contribution of the linear and periodic terms to the deformation before reaching
half the oscillation period. Regarding the earthquake, the corresponding amplitudes is found within 10−5

mm just after it occurred. Similarly, the amplitude of the slow slip event is retrieved once the total cumula-
tive displacement caused by the slow slip event has been fully assimilated.

The final outcome of the KFTS is comparable with basic least squares performance (Figures 2 and 4).
Figure 2 shows that the KFTS cumulative displacement root mean square (RMS) error with respect to the
true displacement is on the order of σϵ (0.1 mm), while it is of ∼10−5 cm with respect to least squares estima-
tion. Regarding model parameters, the difference between KFTS solution and target value is of ∼1 mm,
whereas it is of∼10−3 mm between KFTS and least squares solutions. The noticeably large noise in retrieved
parameters over areas with target values close to zero (Figure 4) is explained by the constant high a priori
variance applied everywhere. Thus, if the location of the events is known, it is preferable to define a spatially
variable a priori variance for, at least, slip events.

We detail here the behavior of the filter as data are assimilated in time and the requirements for convergence.
Figure 3b shows the time series of a representative pixel (located on Figure 2) and Figure 5 the associated evo-
lution of model parameters. The functional model evolves and gains information as data are successively
assimilated. Graphically, the dark blue curves combine both the a priori null model and the little information
brought by the first few points, while the dark red curve uses all available information and closely fits the
underlying model. The model progressively converges toward the least squares solution, close to the target
model, at a rate that depends on how quickly parameter uncertainties collapse (Figures 3b and 5), which
in turns depends on the Kalman gain (Equation 5; Appendix A1). As shown on Figure 5, it takes about
150 days for the offset, a0, to be adjusted and around 1 year for the yearly periodic signal, a2 and a3.
However, the interdependency of functional parameters clearly appears, as variations in the transient event
amplitude a4 induce a change in a0 by 1–2 mm, and the earthquake at t=500 days perturbs almost all para-
meters, including the velocity, which is shifted by∼0.01mm/day. Correlations between parameters appear in
the off‐diagonal terms of the covariance matrix (Figure S1 in the supporting information).

Interestingly, we also see that, although the local earthquake amplitude a5 of 37.4 mm was correctly
retrieved after three assimilations ±7 mm, the assimilation steps for t>750 days lead to an overestimate
of a5 and a correlated underestimate of a1. As interferograms long after the event do not bring information
about its amplitude, the state vectormk needs to bemodified. That is, to avoid fitting noise and limit trade‐off
between parameters, functional parameters in mk can be added or removed from the procedure when rele-
vant. Also, phases that do not appear in latter interferograms can be stored and removed frommk. This does
not affect final time series and lowers the memory load of the algorithm. Practically, our KFTS effectively
works with two storage files: one containing time, phases, and their uncertainties (from the diagonal of
Pk) and another one containing mk, Pk, and other auxiliary information in order to run the next forecast
and analysis at time tk+1.

Nevertheless, it is a challenge to optimally parametrized the inversion with real InSAR data, especially
because mismodeling and misclosure errors are generally not known (Schmidt & Bürgmann, 2003).
3.1.3. Sensitivity Analysis to Predefined Errors
We study the effect of nonrepresentative σγ and σϵ in a sensitivity analysis, for one given pixel (shown in
Figures 3 and 5). We deliberately set poorly chosen values of σγ and σϵ in the KFTS with respect to the

10.1029/2019JB019150Journal of Geophysical Research: Solid Earth

DALAISON AND JOLIVET 8 of 21



known sources of noise. Subplots of Figure 6 display how four proxies of the quality of KFTS estimates vary
as a function of those two parameters. While Figures 6a and 6b consider the error in the absolute estimates,
and thus the accuracy, Figures 6c and 6d indicate the precision (i.e., standard deviation) associated with
those estimates.

The quantity displayed in Figure 6a is the RMS error of phase estimates, and in Figure 6c it is the average of
the posterior standard deviation of the phase estimates, σϕk

. The exact equations corresponding to fields in

Figures 6b and 6d are

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L
∑
L

n¼1

an−atn
atn

� �2
s

and
1
L
∑
L

n¼1

σan
janj; (7)

respectively, where the superscript t indicates target value and L is the number of parameters. The first
functional model parameters a0, a constant offset, is voluntarily excluded because, first, atn ¼ 0 and, sec-
ond, the misfit in a0 mainly results from the requirement that ϕ0 = 0.

As expected from governing equations, we see that estimated standard deviations are directly impacted
by choices in σγ and σϵ. Indeed, phase uncertainties appear sensitive to σϵ and model parameter

Figure 4. Maps of three of the model parameters: velocity, slow slip amplitude, and quake amplitude. For comparison the true values (top), the values retrieved
through least squares inversion (LSQ) (middle) and the values retrieved through Kalman filter (KF) time series analysis (bottom) are displayed.
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uncertainties to σγ (Figures 6c and 6d). Another main feature is the improvement of an estimates at the
expense of the accuracy in ϕk when approaching the domain σϵ≥ σγ (Figures 6a and 6b). This is clearly
not desirable, because phase estimates directly derive from interferometric data, while model parameters
depend on an ad hoc functional description, which may have to be improved as new data are
assimilated. To the contrary, when too much confidence is given to interferograms with respect to
the model (i.e., σϵ≤ σγ×10

−4), the effective misclosure error means that data may be hard to reconcile
together and numerical instability arises. Thus, providing σϵ/σγ is in between 10−4 and 1, the quality of ϕk
and an estimates appears robust to several orders of magnitude variations in σγ and σϵ. We still observe an
upper bound limit of ∼30 and ∼15 mm for σγ and σϵ, respectively, above which estimates are so uncertain

Figure 5. Temporal evolution of model functional parameters at each assimilation step for the reference pixel in our synthetic test. Colors refer to time
(see colorbar in Figure 3). The amplitudes of the slow slip and the quake are added in the parameter space just before they occur. For reference, the dotted
black line shows the true parameter value (i.e., target), and the dashed gray line shows the least squares optimum. The Kalman filter solution tends toward the
least squares solution, which itself depends on the interferometric network configuration and the noise in interferograms.

Figure 6. Errors in estimated model parameters (an) and phases (ϕi) from the Kalman filter time series analysis (KFTS) as a function of the standard deviation of
the mismodeling noise (σγ) and the standard deviation of interferometric network misclosure (σϵ). The true value of the noise injected in the build of the
synthetic deformation is marked by the white circle. (a) and (b) reveal variations in the KFTS estimate accuracy by looking at the root mean square error
(RMSE) in ϕi (a) and in an(b). (c) and (d) display the mean standard deviation (abrv. std) of estimates. Values concerning parameters are normalized for
homogeneity. The white dashed line corresponds to σγ/σϵ = 1 and the dotted line to σγ/σϵ = 104.
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that they do not adjust to the data. Time series representative of the overall effect of underestimating or
overestimating σγ and σϵ are shown in Figures S4–S7.

In practice, ϵij only results from how we construct interferograms and could be directly estimated by quan-
tifying the effect of multilooking and filtering during the processing of each interferogram. Alternatively, it
could bemeasured either before time series analysis by forming triplets of interferograms (Benoit et al., 2020;
De Zan et al., 2015) or a posteriori by looking at the discrepancy between real and reconstituted interfero-
grams from time series (Cavalié et al., 2007).

In addition to uncertainty quantification, another challenge of real InSAR data is that all interferograms do
not unwrap everywhere due to local loss of coherence. Consequently, given pixels will potentially show
missing links in the interferometric network. In the following, we apply our KFTS to two data sets thought
to be representative of the challenges brought by real InSAR data.

3.2. Application to the Etna Volcano on Envisat Asar Images

As a real case example, we first present the assimilation of interferograms over the Etna volcano in Sicily. We
have chosen this example, as it has been used in the past for multiple validation studies (e.g., Doin et al.,
2011; Jolivet et al., 2014) and because several GNSS stations record the relatively large displacements
observed over this volcano. We use 63 images from the ENVISAT mission acquired between January 2003
and August 2010 (Doin et al., 2011). Single Look Complex (SLC) images are focused and coregistered to a
single master using the Repeat Orbit Inteferometry Package (ROIPac; Rosen et al., 2004). Coregistration
to a single master image is enhanced using the Digital Elevation Model, and all possible interferograms
are derived. The 222 interferograms are filtered and unwrapped using a branch cut algorithm (Goldstein
& Werner, 1998; Goldstein et al., 1988). We correct interferometric phase delays due to the temporal varia-
tions of the stratified troposphere using the output of the ERA‐Interim reanalysis of atmospheric data as
described in Jolivet et al. (2011). All details about the processing can be found in Doin et al. (2011) and in
Jolivet et al. (2014).

We apply our KFTS on each pixel of the stack of images that has unwrapped interferometric data. In
addition, to the precise retrieval of phase evolution, we aim to obtain a mean rate of deformation.
Hence, our parametrized model for the phase evolution includes linear and seasonal terms described

Figure 7. (a) Map of cumulative phase change between 2003 and 2010 over Mt. Etna (Sicily, Italy) as inferred from the
Kalman filter time series analysis applied on ENVISAT data. (b) Map of the associated standard deviation. Displacements
and associated uncertainties are in the direction of the satellite's line of sight (LOS). Topography, shown in the
background in shades of gray, is from SRTM (Farr et al., 2007). Holes in the data correspond to pixels excluded
from the inversion because less than 20 interferograms were unwrapped at their location. Black squares show
a selection of GPS station used for comparison (Blewitt et al., 2018).
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by four parameters, a constant term, a rate of phase change, a sine term, and a cosine term. This model is
very simplified for a volcano that has undergone several eruptive events over 2003–2010. Although this
may lower our predictive capabilities, phase estimates of uninterrupted interferometric network should
not be affected, and more complex model could be applied in a second time (section 3.1). Consequently,
we set σγ = 18 mm and σϵ = 0.01 mm, as a high σγ with respect to σϵ limits the confidence in the
model‐based phase forecast and keeps large uncertainties for model parameters. With the same logic, we
chose a priori standard deviation equal to 15 mm for the constant term, 5 mm/day for velocity, and 10 mm
for sine and cosine terms. We set the initial state vector m0 to zeros. Note that, because the constant term
reflects the noise in the reference acquisition (ϕ0) with respect to the model, its standard deviation should
be close or superior to σγ. The impact of different σγ and P0 on model parameter estimates is displayed in
Figures S11–S13.

We compare local time series of displacement derived fromGlobal Navigation Satellite System (GNSS), often
referred to as GPS for simplicity, at stations EIIV, ESLN, HCRL, and MMME (Figures 7 and 8; Blewitt et al.,
2018). We consider differential displacements between two GPS stations and the equivalent closest InSAR
pixel. Figure 7 shows the cumulative phase change and associated uncertainties over 8 years in the direction
of the line of sight (LOS) of the satellite as derived by our KFTS at t61, 14 July 2010. The displayed penulti-
mate phase ϕ61 incorporates most of the studied deformation with limited uncertainty, as it is a reanalyze
phase, unlike the last phase.

Standard deviations in Figure 7b are marked by a clear spatial dichotomy between the well‐resolved pixels
displaying uncertainties <10−1 mm and other pixels with uncertainties reaching more than 10 mm. Precise
estimates are available on the volcano flanks and in the urbanized region to the south, notably around
Stations ESLN, EIIV, and HCRL, and, thus, cover the area of geophysical interest. In Figure 7a, the displace-
ment field is dominated by aseismic slip along the Pernicana fault extending from the volcano summit to the
eastern coast of Sicily (Palano et al., 2006). Indeed, the fault slippedmore than 25 cm locally in the LOS direc-
tion over the∼8 years covered by the time series. Smaller coherent displacements of a few cm on the volcano

Figure 8. Overlay of GPS and InSAR time series of relative deformations. Each subplot includes the complete time series and its uncertainty for InSAR (red dots)
and the available GPS time series on the same time period (blue dots). The subplot titles indicate the pair of stations located in Figure 7. The GPS data points
that are temporally the closest to InSAR measurements are highlighted in light blue. They are used to compute the Spearman correlation coefficient, Cs
(Equation 8). The black line is the deformation according to the functional model of the Kalman filter on InSAR.
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flanks are also recovered. In the plains surrounding Mt. Etna, cm‐scale uncertainties are associated with
about ±2 cm of sharp interpixel variations in the displacement field.

Large uncertainties arise where more than 50% of interferograms do not unwrap due to significant spatial
noise (Figure S10). When a pixel is not unwrapped, no information is available at this location, and the ana-
lysis step of the filter cannot be performed. In this configuration, the forecast made from the functional

model is taken as the estimate with its large uncertainty (i.e.,mk ¼ mf
k andPk ¼ Pf

k). This allows to continue
building the time series and to connect different subsets of interferograms, which may not be linked by a
common phase. However, the error associated with the forecast phase is carried forward in the subsequent
solutions, if they are all relative to this one. A solution to lower uncertainties is to rereference the phases by
constructing long‐baseline interferograms.

Time series in Figure 8 evidence that the relative InSAR displacement between pixels close to GPS stations is
consistent with what is measured independently by GPS. A measure of the monotonicity of this relationship
is given by the Spearman's rank correlation coefficient for n pairs of InSAR‐GPS observations, defined as

Cs ¼ 1 −
6

nðn2 − 1Þ∑
n

i¼1
d2i ; (8)

where di is the difference between the ranks of the ith coeval observations in both sets. This metric was
preferred over other correlation coefficients because of its little sensitivity to outliers. For the six differen-
tial displacements considered, Cs is always positive, indicating that when InSAR measures an increase, so
does GPS (Figure 8). Moreover, its value close to 0.5 for 4 time series reveals a significant numerical cor-
relation. Nonetheless, the implications of this metric are limited because it is applied to the subset of GPS
measurement coincident in time with InSAR acquisitions and both time series are affected by different
sources of noise. Independently of the numerical correlation, the overall good match between measured
velocities validates our KFTS approach for InSAR time series analysis, even when the quality of data
implies that errors are large (Figures 8a, 8d, and 8e).

3.3. Application to the Chaman Fault on Sentinel 1 Images

In the following section, we illustrate the KFTS performance to reconstruct surface displacement around a
tectonic fault imaged by a recent satellite constellation. The satellites of the Sentinel 1 mission launched in
2014 and 2015 are providing SAR images with a better temporal sampling than ever before for C‐band satel-
lites. Over the Chaman fault, we construct 364 interferograms with 95 acquisitions spanning November 2014
to May 2019. We use the ISCE package (Gurrola et al., 2010; JPL/Caltech) to build unwrapped interfero-
grams. We coregister SAR images with a network‐based enhanced spectral diversity (NESD) approach
(Fattahi et al., 2017) and remove atmospheric perturbations using ECMWF‐ERA 5 global reanalysis of atmo-
spheric data (PyAPS software; Jolivet et al., 2011, 2014). We also multilook and filter interferograms to
enhance the signal‐to‐noise ratio before unwrapping with the branch cut method (Goldstein & Werner,
1998; Goldstein et al., 1988). The final size of the 2,488 × 7,024 pixels is ∼80 × 130 m. Additionally, we sub-
tract to each interferogram a best fitting ramp (linear function of longitude and latitude) on the subregion
north of the fault trace.

For comparison, we perform the time series analysis with both the well‐tested New Small Baseline Subset
method, NSBAS (Berardino et al., 2002; Doin et al., 2011) implemented in GIAnT (Agram et al., 2013),
and the KFTS developed here. We chose a simple functional description of deformation with a constant
deformation rate and seasonal oscillations. A disadvantage of this model is that it poorly describes deforma-
tion for specific areas affected by earthquakes or anthropogenic groundwater pumping. However, because
our implementation of NSBAS does not allow for spatial variations of the parametrized model, we prefer
not to account for those very local dynamics (i.e., local in comparison with our 600 km‐long interferograms).
Our a priori uncertainties are 25 mm for offset, 9 mm/year for velocity, and 8 mm for cosine and sine terms.
In agreement with section 3.1.3, we chose σγ = 10 mm and σϵ = 0.05 mm. Similarly to the previous example,
we focus on the reconstructed phases with time rather than on its parametrized description and display
maps of the penultimate phase of the time series (Figure 9).
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Final solutions from NSBAS and KFTS are very similar (Figures 9a and 9b). The displacement relative to the
first acquisition shows a long‐wavelength fault‐perpendicular gradient of about 60 mm over ∼120 km. We
also observe strong negative signals with a kilometer‐scale footprint, such as around the city of Quetta, most
likely due to aquifer‐related subsidence. Moreover, there is a sharp contrast of displacement across the
Chaman fault, which reaches up to ∼3 cm, notably in between labeled Pixels A and B or across the north-
ernmost segment, whereas no to little contrast is seen across the Ghazaband fault. This is consistent with
Fattahi and Amelung (2016) in depth study of the region.

The difference in phase reconstruction between both methods is smaller than 0.1 mm after the assimilation
of ∼4 years of data, except in areas where the KFTS identified large uncertainty in the output with respect to
the ±0.05 mm precision (equal to σϵ) valid for most pixels (Figures 9c and 9d). Mismatch between NSBAS
and KFTS methods and large uncertainties in phase and model parameters concentrate around the dune
desert to theWest and the Indus River plain in the southeast corner. There, rapid geomorphological changes,
seasonal oscillations, and human activity result in a low interferometric coherence; hence, many interfero-
grams could not be unwrapped there.

The concordance is also true at all time steps for every parameter of the state vector (displacements and func-
tional model). Figure 10 presents three representative time series of deformation on single pixels. The two
nearby pixels selected in Figures 10a and 10b exhibit highly correlated deformation with a spread of ∼7 cm
around the functional model. Phase estimation is precise with ± 0.05 mm and in good agreement with
NSBAS estimations. For Pixel A, the inferred velocity is found to be 3.5±0.9 mm/year in the KFTS or 3.5 in
the NSBAS solution, and, similarly, the seasonal amplitude and phase shift are 0.9±1.2 mm and
0.7±0.1 rad or 0.9 mm and 0.74 rad. Those functional descriptions agree with each other, and the uncertain-
ties given by the KFTS are precious indicators of themodel representativity and, thus, of the confidence in the
resulting forecast.

The time series in Figure 10c exhibits large error bars of ∼5 mm from mid‐2016 arising from disconnected
subsets in the interferogram network. In the KFTS, the use of the functional model to forecast a

Figure 9. Maps of cumulative phase change between late 2014 and early 2019 over western Pakistan and southern Afghanistan from time series analyses applied
on Track 42 data of Sentinel 1. (a) Reference NSBAS solution, with labels of markers appearing in all subplots. (b and c) Corresponding Kalman filter time series
analysis (KFTS) solution with its standard deviation. (d) Absolute difference between the NSBAS (a) and KFTS (b) solutions. Displacements and associated
uncertainties are in the direction of the satellite's line of sight. Two main faults of the region are the Chaman fault (CF) and the Ghazaband fault (GF)
(Fattahi & Amelung, 2016). Topography is shown in the background in shades of gray. Cities are marked by square markers. The three black crosses
and letters locate the selected pixels in subplots of Figure 10.
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disconnected phase and link subnetworks means that the model error propagates to subsequent phase
estimations. The parametrized model of deformation differs sensibly between NSBAS and KFTS methods
(Figure 10), by opposition to the very good agreement found between KFTS and least squares for
synthetic data (Figure 4). A first reason for this is the a priori on model parameters in the KFTS, which
effectively is a form of regularization leading to smaller velocity estimates of a1=−19 mm/year instead of
the physically unlikely −40 mm/year for NSBAS. A second reason is that the NSBAS solution does not
account for errors in model and data directly and instead attributes a weight to phase fitting over model
adjustment, so that Equation 2 only impacts phase values when interferometric connections do not allow
an estimate with Equation 1 (Doin et al., 2011). By definition, this weight is similar to the ratio σϵ/σγ and
thus was set to 10−3.

Therefore, our KFTS can be applied to old, often sparse, and incomplete data (ENVISAT) as well as to most
recent and memory‐consuming data, which are collected nowadays (Sentinel 1).

4. Discussion
4.1. Guideline to Choose Parameters

Efficient KFTS requires a sensible parametrization of the problem, with the definition of appropriate errors
(σϵ, σγ), descriptive functional model (fn(tk),∀n), and a priori knowledge on the model parameters inm0 and
P0 (section 2.3).

For the functional model, it is a good rule of thumb to start with a simple model, which includes a linear
polynomial and an annual periodic oscillation. The innovation or residual term is key to assess the relevance
of this parametrized model, as it quantifies the difference between the data and the information brought by
the forecast (section 2.2). If the model is appropriate, the mean innovation at each time step should have a
Gaussian distribution around zero on each pixel (e.g., subplots b and c versus d and e in Figure S3). Thus,
during the iterative process, checking the distribution of this mean innovation would help refine the para-
metrized model. Moreover, some sources of deformation are a priori known and can be included. For
instance, the displacement due to earthquakes affecting the study area can be easily included using a step
function, which footprint is constrained by the location and timing of the event in seismic catalogs. To adapt
to the diversity of applications of our KFTS, other implemented functions include higher degree polyno-
mials, hyperbolic tangent, exponential and logarithmic decay, and basis spline.

Further assumptions are required on the functional model when evaluating the a priori statem0 and covar-
iance P0.m0 and P0 define expected values of themultiplicative coefficients an to each functional element fn.
Assuming an terms are unknown, m0 is set to zero vector with a likely spread in the diagonal of P0.
Consequently, small P0 dims extrema as it is effectively a regularization term for an, while large P0 allows

Figure 10. Time series for 3 selected pixels (indicated on Figure 9). Our Kalman filter time series analysis (KFTS) solution with associated standard deviation
(red dots) is shown alongside the solution computed with the NSBAS method (Berardino et al., 2002; Doin et al., 2011). Most of the KFTS phase solutions
have standard deviation too small to be visible. The corresponding functional models of deformation are also represented: dashed black curve for NSBAS
and red line for KFTS. An idea of the spread of the models within one standard deviation of the KFTS solution is outlined by the red shaded area
delimited by the parametrized phase evolution given ai ± σai (Equation 2).
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parameters to adjust freely to incoming data and stability might be lost (Figures 11, S8, S9, and S12). In
practice, the order of magnitude of a priori errors is determined using our physical knowledge about
expected deformation. Higher values will be favored if little smoothing of the model is desired; however,
this may lead to unrealistic forecast and very large σan in the first few assimilation steps. The impact of
the choice of m0 and P0 will tend to vanish as more data are assimilated.

Regarding the mismodeling noise γk and network misclosure ϵij (Equations 1 and 2), we assumed that they
could be represented by constant standard deviations σγ and σϵ, unless variations in acquisition quality (e.g.,
seasonal noise from snow cover) or in interferogram construction (e.g., varying amount of filtering) are
known. Typically, we have σϵ≪ σγ so that phase fitting is strongly favored over parametrized model adjust-
ment (section 3.1.3; Figure 11). ϵij could be measured by looking at the closure of triplets of interferograms
and representative σϵ deduced. σγ should reflect the dispersion of the data around the parametrized model,
which depends on the chosen model itself and the noise in the data. From previously published studies, σϵ is
of the order of the millimeter (assuming no unwrapping error) and σγ superior to the centimeter (Agram &
Simons, 2015; Cavalié et al., 2007; López‐Quiroz et al., 2009; Schmidt & Bürgmann, 2003; Sudhaus &
Jónsson, 2009).

4.2. Efficiency of the KFTS

A main improvement of the KFTS over more conventional method is the data assimilation approach. We
have shown that it is capable of accurately solving the same problem than a least squares method.
However, our KFTS is designed to solve other problems relevant to our ever‐expanding SAR archive.

Figure 11. Variations of the gain in phase and model parameter estimates (a–c) and of the standard deviation of those estimates (d–f) as a function of the error
terms used to initialize our KFTS. Quantitative values are derived from Equations 3–5 for the parametrization chose in our synthetic example. We look at
one assimilation step k = 1. The blue line is effectively φ1 and the red line a3. Similar trends, with different amplitudes, are observed for any an. We vary
successively all σan (in the diagonal of P0) (a and d), σγ (b and e), and σϵ (c and f). In (a) and (d) σan is multiplied by a common coefficient. The dashed
gray line indicates zero gain. The black dashed line corresponds to the case where σa3 evaluated at k = 1 is the a priori σa3 (at k = 0). The shaded gray
area is the domain where σϵ > σγ. Green shading highlights the domains where the (i) gain on the phase is maximal, (ii) the gain on model parameter

is not null (i.e., the model learns from data), (iii) the uncertainty on phase estimate is small (∼10−2 mm), and (iv) the uncertainty on parameter

estimate is not very large (<40 mm). Variations in σγ or σan do not affect phase estimates. The model parameters are not adjusting to the data

when the a priori on its standard deviation is too low or when σγ is too high.
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First, it can actualize a preexisting time series with new interferograms in a fast and neat way. Second, we
have built the tool in a modular and flexible manner, so that it can adapt to the evolving knowledge of
the deformation as data are assimilated. Below, we discuss and detail those statements.

The iterative procedure allows fundamental discussion about the amount and shape of data necessary to
obtain a meaningful description of deformation. Our tests reveal that phases are instantaneously fitted to
±0.1 mm with later refinement as we gain information from new interferograms. Differently, model para-
meters require at least 1 year of data in order to converge, a time that depends on the variability of deforma-
tion measured and how precise and accurate is our a priori knowledge. Velocity adjusts rather quickly, if no
transient event is recorded, compared to the cosine and sine terms that require obviously more than a year.
Consequently, forecast within the first year is rarely accurate, which clearly reflects on the uncertainty. Once
model parameters have converged toward their final value, the forecast is as good as the model is, indepen-
dently of the elapsed time of assimilation. The instantaneous innovation reflects the dispersion of the data
around the background model.

Updating preexisting model implies a gain of time, computing power and memory. Quantitative compari-
sons of computing performance of NSBAS and KFTS methods are not easy because their implementation
are different. Indeed, our KFTS is implemented for simultaneous processing of pixels in parallel by
Message Passing Interface, while NSBAS uses multiple threads with shared memory in its GIAnT version
(Agram et al., 2013). However, it is clear that the numerical cost of updating an existing time series with
the KFTS is much smaller than when retrieving all the phases at once with NSBAS. The time to run a
KFTS update incorporates not only the computation time but also the time necessary to read and write data
and models. The latest has been optimized so that, in the example presented in section 3.2, reconstructing
phases and parameters for the 62 first dates takes 17 min, whereas updating the time series with the last
acquisition takes only 30 s. As a reference, we use two computing nodes with 20 threads per nodes and
InfiniBand communication. Concerning memory usage, previously computed interferograms do not need
to be stored in order to update existing model, providing that the latest estimates ofmk and Pk are available.
For the example in section 3.3, this information is stored in a HDF5 file of 6 Go, while all interferograms
weigh >25 Go.

Another advantage of the KFTS is the systematic and consistent propagation of error through time series
analysis. It is a requirement to correctly combine what we know from the data and from the existing model.
We have seen that the absolute value of the uncertainty associated with computed phases is a consequence of
the a priori standard deviation of misclosure (σϵ) (Figure 6), which can be measured from interferograms or
inferred from the way interferograms are built. Additionally, the standard deviation of mismodeling error
(σγ) will also come into play in the case of missing data for a time step or disconnection in the interferometric
network. This error is a more subjective parameter, as it depends on the functional description chosen, and
the dispersion of phases around it. Nevertheless, the relative uncertainty in between pixels and time steps
directly results from the data structure, such as the number of interferograms available or how “far” is the
temporal reference. Those differences allow us to discriminate pixels and weight estimates for subsequent
processing or modeling. This is particularly relevant for long time series (>1 year). Furthermore, covariance
estimation is key to combine different data sets, such as InSAR and GPS (Bekaert et al., 2016; Sudhaus &
Jónsson, 2009) or different frames of InSAR acquisitions (Jolivet & Simons, 2018).

4.3. Limitations and Perspectives

The propagation of uncertainty highlights a fundamental limit of time series analysis. The time series being
relative to the first date, errors tend to propagate in time. This is a big issue for long time series, such as ones
drawn from Sentinel 1 nowadays. Numerous interferograms, especially those with long baselines, are neces-
sary to limit this effect inherent to any classical InSAR time series analysis. Moreover, the similarity with
GPS time series evidenced in section 3.2 shows the possibility of a precise rereferencing of the pixel location
within the time series. This has been done for vertical displacement (Shirzaei & Bürgmann, 2018). In addi-
tion, our comparison with GPS time series could be improved by correcting interferograms for ionospheric
effect (Liang et al., 2019; Simons & Rosen, 2015).

The pixel‐by‐pixel approach of our KFTS implies that we do not account for spatial covariance (Jolivet &
Simons, 2018). This covariance may take the form of a function of the pixel‐to‐pixel distance, which
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empirically models the isotropic part of the InSAR signal not due to ground deformation. Such signal mainly
arises from atmospheric effects. In our real case example, we limited the spatial correlation by substracting a
best fitting ramp to interferograms and by removing the stratified tropospheric delays in each interferogram.
Turbulent atmospheric delays remain, however. Nevertheless, because our KFTS is built to deal with long
time series, the temporally decorrelated contributions of InSAR (e.g., turbulent delays) are reflected by the
interacquisition dispersion for a given pixel and is empirically included in the mismodeling error. This con-
trast with studies looking at few SAR acquisitions to deal with a localized event in time (Lohman & Simons,
2005; Sudhaus & Jónsson, 2009). Spatial covariances are also implemented to increase spatial continuity
(Jolivet & Simons, 2018). For our KFTS, we found that spatial continuity of phase and function parameter
naturally arises from the data, which only has high interpixel noise in regions where coherence is low
(e.g., Figure 10). In such region, the numerous “holes” in assimilated interferograms ensure low confidence
in the KFTS estimates. Spatial constrain would help gain confidence by adding more information in the pro-
blem, but it would dramatically increase the numerical cost and would require additional parametrization
(Agram & Simons, 2015; Jolivet & Simons, 2018). Additionally, the smoothing of model parameters brought
by the a priori ensure greater spatial continuity in low coherence area with respect to NSBAS.

We built the KFTS as an accessible tool relevant to many geophysical applications. More specific applica-
tions will be implemented in the future, taking advantage of the iterative procedure as well as systematically
exploiting outputs of the KFTS not detailed in this paper, such as the full temporal covariance matrix or the
gain and innovation vectors. For instance, the iterative procedure is ideal to implement automatic detection
of transient events, such as slow slip on faults. The quality of the parametrizedmodel could be systematically
checked by looking at the instantaneous innovation of phase values but also of model parameters. An auto-
matic detection of non‐Gaussianity of the innovation distribution over time could send a warning, stop the
assimilation, and/or automatically update the model with predefined functions (e.g., quadratic term and
Heaviside function). Another major improvement of our KFTS would be to remove σγ from the predefined
parameters and include it as a parameter to be recovered during time series analysis.

5. Conclusion

We developed a tool to rapidly and efficiently update preexisting time series of deformation from a set of
unwrapped interferograms as they are made available. The Kalman filter approach is new to InSAR time ser-
ies analysis and was tested on diverse sets of synthetic and real interferograms in regions affected by tectonic
deformations. We show that the filter behaves in agreement with existing methods and GNSS measure-
ments, providing that we correctly estimate errors associated with interferograms as well as with the para-
metrized description of deformation. We thoroughly studied and described the design and impact of setup
parameters. The source code is fully implemented in Python 3 and was built as a flexible and modular tool
for the community.

Appendix A
A1. Explicit Formulation of an Example

To explicitly present our KFTS (Equations 3, 4, and 5) and the design of each matrix for InSAR data
(Table 1), we describe an example below.We consider the case of the KFTS at the second assimilation of data
(k=2) for a linear phase model, with an offset and a velocity ϕi=a0+a1ti. The state vector, then, writes as
m1 = (a0, a1, ϕ0, ϕ1). After assimilation of data at time t1, we have the covariance P1, the measurement
A2, and the noise Q2 as

P1

4 × 4
¼

σ2a0
σ2a1

σ2ϕ0
σ2ϕ1

0
BBBB@

1
CCCCA;

A2

5 × 4
¼

1

1

1

1

1 t2 0 0

0
BBBBBB@

1
CCCCCCA
; and

Q2

5 × 5
¼

q0
q1

0

0

σ2γ

0
BBBBBB@

1
CCCCCCA
: (A1)

Because we want to exactly reconstruct phases with respect to a fixed null starting phase, ϕ0, thenσϕ0
must be

set to zero. The parameters q0 and q1 are nonzero if there is a need to add systematic noise for functional
parameters a0,1. This would relax the weight of the previous estimate of a0,1 on each forecast.
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We consider two interferograms, ϕ2−ϕ0 and ϕ2−ϕ1, from three acquisitions at times t0, t1, and t2. Thus, the
data, observation model H2, and covariance R2 are given as

d2

1 × 2
¼ ðΦ02; Φ12Þ; H2

2 × 5
¼ 0 0 0 0 1

0 0 0 −1 1

� �
; and

R2

2 × 2
¼ σ2ϵ 0

0 σ2ϵ

 !
: (A2)

Applying Equation 3,

σfϕ2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2a0 þ σ2a1 t

2
2 þ σ2γ

q
; and ϕf

2 ¼ a0 þ a1t2: (A3)

Note that, if data are sufficient, the phase ϕ1 would have been reconstructed at the previous step with little
uncertainty, so that σϕ1→0. Following this assumption and using the data in d2, we update the forecast with

Equations 4 and 5. As an example, we have

ðσϕ2Þk¼2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσf

ϕ2
Þ2 − 2κðσfϕ2

Þ4
q

andðϕ2Þk¼2 ¼ ϕf
2 þ ρκðσfϕ2Þ

2; (A4)

ðσa1Þk¼2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2a1 − 2κσ4a1 t

2
2 þ q0

q
andða1Þk¼2 ¼ a1 þ ρκσ2a1 t2; (A5)

with κ the common part of the gain to all analyzed parameters and ρ the residual expressed as

κ ¼ 1

σ2ϵ þ 2ðσfϕ2
Þ2

andρ ¼ Φ02 þ Φ12 þ ðϕ1Þk¼1 − 2ϕf
2: (A6)

The subscript k = 2 outlines that the values are those evaluated at the second assimilation step. The velocity
a1 will be reanalyzed at each assimilation step and the phase ϕ2 may be reanalyzed if interferogram(s)Φ2k for
any k are assimilated over the course of subsequent assimilation steps. If noise associated with interferogram
construction is small (i.e., σϵ→0), then Equation A4 tells us that the phase at time t2 is perfectly reconstructed
with zero uncertainty. In a more general sense, Equations A4 and A5 evidence the dependency of any phase
and model parameter estimate to error terms arising from governing Equations 3–5 (see Figure 11).

Data Availability Statement

Data sets used in this study are freely available online. Synthetic Aperture Radar images are from the PEPS
platform (Sentinel 1) and from ESA Earth Online (Envisat). The digital elevation model is from NASA
EarthData. ERA‐5 global reanalyses of atmospheric data are distributed by the ECMWF. GPS time series
come from the Nevada Geodetic Laboratory website. The latest release of the source code is available on
Zenodo (KFTS‐InSAR; DOI:10.5281/zenodo.3816782).
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